Pi
Aus AkiWiki
Wiki (Diskussion | Beiträge) (Today is 14/3 (or 3/14 in the month/day format), which means... Happy #PiDay! Pi Day is an annual celebration of the mathematical constant π (pi), which has an approximate value of 3.14 – thus it bein) |
Wiki (Diskussion | Beiträge) (Pi (π) has been known for almost 4000 years, but even if we calculated number of seconds in those 4000 years and calculated π to that number of places, we would still only be approximating its actual) |
||
Zeile 138: | Zeile 138: | ||
- | ==Today is 14/3 (or 3/14 in the month/day format) | + | ==Today is 14/3 (or 3/14 in the month/day format)== |
Pi Day is an annual celebration of the mathematical constant π (pi), which has an approximate value of 3.14 – thus it being honored on 3/14. | Pi Day is an annual celebration of the mathematical constant π (pi), which has an approximate value of 3.14 – thus it being honored on 3/14. | ||
Zeile 147: | Zeile 147: | ||
140323 via fb wiki p | 140323 via fb wiki p | ||
+ | |||
+ | |||
+ | ... | ||
+ | |||
+ | Pi (π) has been known for almost 4000 years, but even if we calculated number of seconds in those 4000 years and calculated π to that number of places, we would still only be approximating its actual value. | ||
+ | Ancient Babylonians calculated area of a circle by taking 3 times square of its radius, which gave a value of pi = 3. One Babylonian tablet (1900–1680 BC) indicates a value of 3.125 for π, which is a closer approximation. | ||
+ | Rhind Papyrus (1650 BC) gives us insight into mathematics of ancient Egypt. Egyptians calculated area of a circle by a formula that gave the approximate value of 3.1605 for π. | ||
+ | First calculation of π was done by Archimedes of Syracuse (287–212 BC), one of greatest mathematicians of the ancient world. Archimedes approximated area of a circle by using Pythagorean Theorem to find areas of two regular polygons: polygon inscribed within circle and polygon within which circle was circumscribed. Since actual area of circle lies between the areas of inscribed and circumscribed polygons, areas of polygons gave upper and lower bounds for area of circle. Archimedes knew that he had not found value of π but only an approximation within those limits. In this way, Archimedes showed that π is between 3 1/7 and 3 10/71. | ||
+ | A similar approach was used by Zu Chongzhi (429–501 CE), a brilliant Chinese mathematician and astronomer. Zu Chongzhi would not have been familiar with Archimedes’ method, but because his book has been lost, little is known of his work. He calculated value of ratio of circumference of a circle to its diameter to be 355/113. To compute this accuracy for π, he must have started with an inscribed regular 24,576-gon and performed lengthy calculations involving hundreds of square roots carried out to 9 decimal places. | ||
+ | |||
+ | 310324 via fb |
Version vom 31. März 2024, 18:49 Uhr
Pi-Day
Der 14.3., in US-amerikanischer Datumsschreibweise 3/14, ist Pi-Day, der inoffizielle Feiertag zu Ehren der Kreiszahl Pi. (3,14 ist der numerische Wert von Pi auf zwei Dezimalen gerundet.) 1988 zum ersten Mal ausgerufen, fand sich dafür sofort eine weltweite Fangemeinde. Schließlich ist Pi nicht irgendeine Zahl. Sie schmückt fast jede Formel der Quantenphysik, spiegelt also eine essenzielle, wenn auch nie aufklärbare Wahrheit der Welt. Umso mehr inspiriert Pi zu philosophischen Gedanken, zu Spielereien, mathematischen Geniestreichen, Gedächtniswettbewerben, liebenswerten Verrücktheiten. ... (Produktion 2011)
via swr2 wissen
AKI-termin
könnte am 14.3. um 3.14h sein ... 2605 ... auch 15.14h wäre möglich, denn 3.14h ist ja schon arg früh ... ...
Pi(z.z)a ==
volumen einer pizza mit radius z und höhe a ... #piday
Die objektorientierte Sprache Python eignet sich hervorragend zum Schreiben von Skripten, Programmen und Prototypen. Sie ist frei verfügbar, leicht zu lernen und zwischen allen wichtigen Plattformen portabel, einschließlich Linux, Unix, Windows und Mac OS. Damit Sie im Programmieralltag immer den Überblick behalten, sind die verschiedenen Sprachmerkmale und Elemente in Python - kurz & gut übersichtlich zusammengestellt. Für Auflage 5 wurde die Referenz komplett überarbeitet, erweitert und auf den neuesten Stand gebracht, so dass sie die beiden aktuellen Versionen 2.7 und 3.4 berücksichtigt. Python - kurz & gut behandelt unter anderem: Eingebaute Typen wie Zahlen, Listen, Dictionarys u.v.a.; Anweisungen und Syntax für Entwicklung und Ausführung von Objekten; Die objektorientierten Entwicklungstools in Python; Eingebaute Funktionen, Ausnahmen und Attribute; pezielle Methoden zur Operatorenüberladung; Weithin benutzte Standardbibliotheksmodule und Erweiterungen; Kommandozeilenoptionen und Entwicklungswerkzeuge. Mark Lutz stieg 1992 in die Python-Szene ein und ist seitdem als aktiver Pythonista bekannt. Er gibt Kurse, hat zahlreiche Bücher geschrieben und mehrere Python-Systeme programmiert.
...
>>> help
Type help() for interactive help, or help(object) for help about object.
...
>>> import random
>>> help (random)
Help on module random:
NAME random - Random variable generators.
MODULE REFERENCE https://docs.python.org/3.9/library/random
The following documentation is automatically generated from the Python source files. It may be incomplete, incorrect or include features that are considered implementation detail and may vary between Python implementations. When in doubt, consult the module reference at the location listed above.
Pi per Zufallszahlen
Man stelle sich einen Kreis mit Mittelpunkt (0/0) und Radius 1 vor. Es werden zufällig Punkte erzeugt, bei denen sowohl x als auch y im Intervall [0;1[ liegen. Dann wird die Entfernung dieser Punkte zum Ursprung ermittelt. Ist diese Entfernung kleiner als 1, so liegt der Punkt innerhalb des Kreises. Setzt man bei einer ausreichenden Zahl von Zufallspunkten die Zahl der Treffer in das richtigen Verhältnis zur Gesamtzahl der Punkte, so erhält man einen Näherungswert für Pi (Pi = 4 * AnzahlTreffer / AnzahlGesamt).
Every year Pi-day is celebrated on March 14th
Pi is an irrational constant which continues infinitely in decimal expansion, approximated 3.141592653. The date of today, 3/14/15, at 9:26:53.589, is an approximation of pi. Of course 1592 was the best year to approximate pi. However, the second best Pi-day occurs every 100 years (1915, 2015, 2115, etc.). So this will (probably) be the best Pi-day of your life! Spend Pi-day by eating all sorts of pi-foods, like pies, pizza and pineapple ... For more Pi-day information, check http://en.wikipedia.org/wiki/Pi_Day
http://exp.lore.com/post/39129107086/the-story-of-the-first-use-of-venn
...
cool20 wow20
π/4
1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 ...
die Reihe der alternierenden Kehrwerte der ungeraden Zahlen konvergiert zu π/4
größte bekannte Primzahl: 2^82.589.933 - 1
221218 via heise.de
s.a.
Der Satz des Euklid ist ein Lehrsatz aus der elementaren Zahlentheorie und besagt, dass es unendlich viele Primzahlen gibt. Benannt ist er nach Euklid von Alexandria, der ihn als Erster im dritten Jahrhundert v. Chr. in seinen Elementen bewies. Euklid selbst formulierte den Satz wie folgt: „Es gibt mehr Primzahlen als jede vorgelegte Anzahl von Primzahlen“. Eine Primzahl ist eine ganze Zahl größer als 1, die nur durch 1 und sich selbst teilbar ist. Die ersten Primzahlen sind 2, 3, 5 und 7. Der Satz des Euklid besagt, dass die Liste 2, 3, 5, 7, 11, 13 … aller Primzahlen nicht endet, genauso wie die Liste 1, 2, 3, 4, 5, 6 … aller natürlichen Zahlen nicht endet. Der ursprüngliche von Euklid geführte Beweis ist direkt und konstruktiv. Zu einer gegebenen endlichen Liste von Primzahlen wird stets eine weitere noch nicht vorhandene Primzahl erzeugt, ohne diese jedoch explizit anzugeben.
140322 via wiki p
Pi mit-31-415-Billionen-Stellen
150319 via fb
..
..
s.a. Phi - goldener schnitt
...
s.a. Eulersche Zahl - e
Aufgrund ihrer Irrationalität besitzt die Eulersche Zahl e unendlich viele Nachkommastellen. Davon bekannt sind aktuell 12 Billionen Stellen, veröffentlicht von David Christle am 12. Juli 2020.
...
www.mathebibel.de/pi
www.w3schools.com/python/ref_math_pi ... 3.14
https://www.w3schools.com/python/ref_math_pi.asp
George Odom -- 1941-2010
https://books.google.de/books?id=cKpBGcqpspIC&pg=PA268#v=onepage&q=odom&f=false
3105 via wiki p quad d kreis und einige clicks mehr ...
michael.poeltl ... rechnen mit python ... 060221 via site https://homepage.univie.ac.at/michael.poeltl/alt/py/rechnen.html
leseprobe_rheinwerk_python_3_handbuch.pdf ... 50 seiten
https://s3-eu-west-1.amazonaws.com/gxmedia.galileo-press.de/leseproben/5199/leseprobe_rheinwerk_python_3_handbuch.pdf
“I like mathematics because it is not human and has nothing particular to do with this planet or with the whole accidental universe – because, like Spinoza's God, it won't love us in return.”
— Bertrand Russell, Letter to Lady Ottoline Morrell, March, 1912, as quoted in Gaither's Dictionary of Scientific Quotations (2012), p. 1318
230222 via fb
Today is 14/3 (or 3/14 in the month/day format)
Pi Day is an annual celebration of the mathematical constant π (pi), which has an approximate value of 3.14 – thus it being honored on 3/14. π is the ratio used to calculate the circumference of a circle, which is slightly larger than three times the value of the diameter. Pi Day has been observed in many ways, including eating pies, due to the words “pi” and “pie” being homophones in English, and the coincidental circular shape of many pies. So... there's your excuse to get yourself a slice of pie today. 🥧 https://w.wiki/Js2
140323 via fb wiki p
...
Pi (π) has been known for almost 4000 years, but even if we calculated number of seconds in those 4000 years and calculated π to that number of places, we would still only be approximating its actual value. Ancient Babylonians calculated area of a circle by taking 3 times square of its radius, which gave a value of pi = 3. One Babylonian tablet (1900–1680 BC) indicates a value of 3.125 for π, which is a closer approximation. Rhind Papyrus (1650 BC) gives us insight into mathematics of ancient Egypt. Egyptians calculated area of a circle by a formula that gave the approximate value of 3.1605 for π. First calculation of π was done by Archimedes of Syracuse (287–212 BC), one of greatest mathematicians of the ancient world. Archimedes approximated area of a circle by using Pythagorean Theorem to find areas of two regular polygons: polygon inscribed within circle and polygon within which circle was circumscribed. Since actual area of circle lies between the areas of inscribed and circumscribed polygons, areas of polygons gave upper and lower bounds for area of circle. Archimedes knew that he had not found value of π but only an approximation within those limits. In this way, Archimedes showed that π is between 3 1/7 and 3 10/71. A similar approach was used by Zu Chongzhi (429–501 CE), a brilliant Chinese mathematician and astronomer. Zu Chongzhi would not have been familiar with Archimedes’ method, but because his book has been lost, little is known of his work. He calculated value of ratio of circumference of a circle to its diameter to be 355/113. To compute this accuracy for π, he must have started with an inscribed regular 24,576-gon and performed lengthy calculations involving hundreds of square roots carried out to 9 decimal places.
310324 via fb